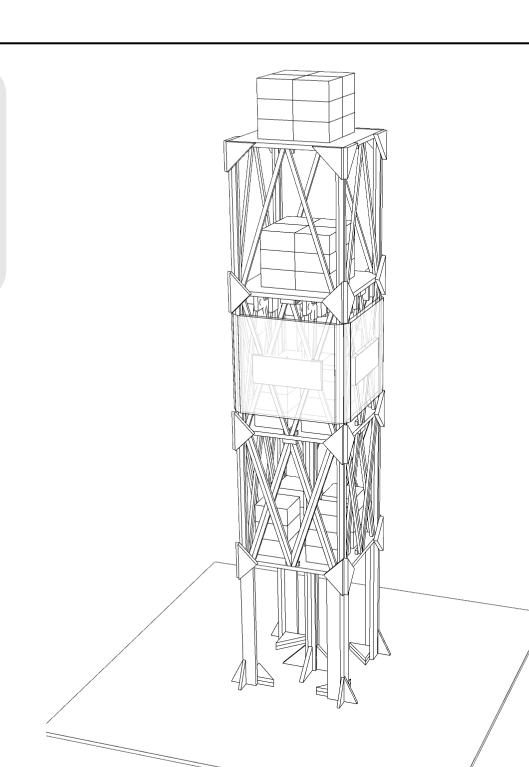


2024 구조물 내진설계 경진대회

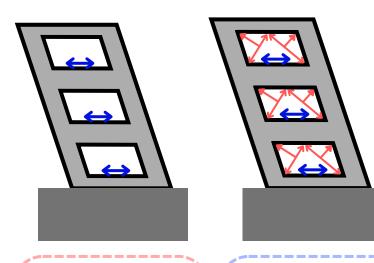
Seismic Structure Design Conest 2024

내진설계를 통한 구조물의 지진피해 절감


팀 소개

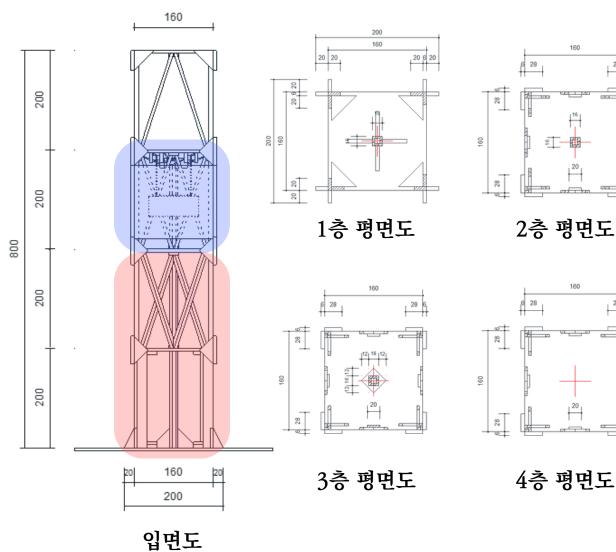
배수지진〈背水之陣〉

지도교수 팀장 구용준 팀원 장민석 팀원 조용준 팀원 김승수 양성철 교수님


구성 순서

01. 개요 02. 설계 전략 03. 실험 과정 04. 공정

01 개요



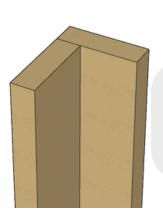
내진구조

지진으로 발생하는 흔들림에 구조가 파괴되지 않도록 튼튼하게 건설하는 것 강성을 높여 설 계하는 방법

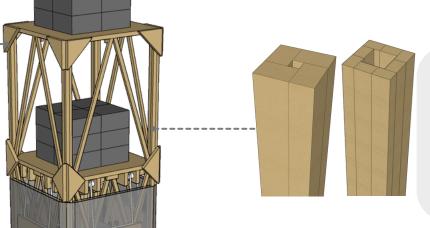
제진구조

지진으로 발생하는 진동에 반응하여 진동을 제어하거나 감쇠시키는 장치를 설치하여 피해를 줄이는 방법

4층 평면도



02 설계 전략



- 거셋 플레이트
- -횡력 저항 성능 증가
- -구조물의 강성 증가
- -자투리 부재를 활용

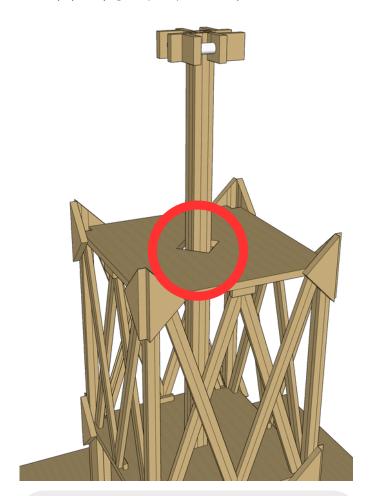
전단벽

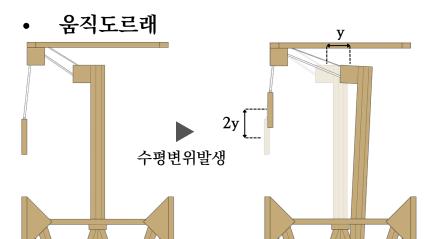

-전단력이 가장 큰 1층은 슬라브를 제작하고 남는 Plate로 전단벽 제작

- 외각기둥과 중심기둥
- -강축과 약축의 차이가 없도 록 제작
- -하중을 수직으로 지탱
- -외각기둥은 2층부터 4층까지 일체화 하여 일체성 확보
- V형가새 + 역V형가새

-휨변위에 저항하기 위한 형태로 V형 과 역V형을 선택 및 결합

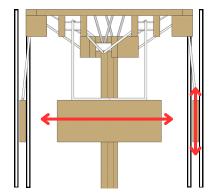
-2층 가새는 2중으로 결합하여 보강



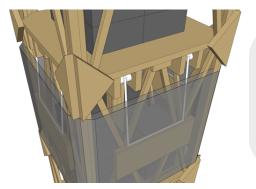


02 설계 전략

• 내부 기둥+움직도르래



- -3층 슬라브 천공을 통해 기둥을 고정X
- -기둥 및 움직도르래의 수평변위 발생



-변위의 2배를 끌어 당기는 움직도르래의 특성 사용

• 마찰댐퍼

• A4 마찰 레일

- -지진으로 인한 수평마찰
- -움직도르래로 인한 수직마찰

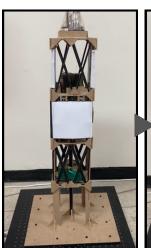
-A4용지를 이용해 마찰이 일어나도록 유도 및 마찰 역할을 하는 플레이트의 탈선을 방 지하는 레일 역할을 함

03 실험 과정

• 1차 실험 결과

▶목표

-댐퍼의 작동 확인 및 구조물 거동 확인


▶실험 분석

- -가진 실험 시 댐퍼의 수평운동이 강하며, 수직운동은 관측되지 않음
- -기둥 및 전단벽의 일체성 미흡
- -지진하중에 대한 구조체의 거동에 대해 각 층 보강 방법 부적합

▶피드백

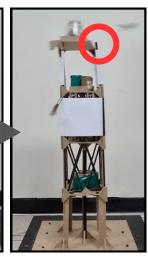
- -댐퍼 운동방향 조정을 위한 추가 설계 고려 -도르래 작동 범위 향상을 위한 설계 고려
- -구조체 거동에 적합한 가새 구조 변경 고려

• 3차 실험 결과

▶변경사항

-4층부 V자 + 역V자 가새로 설계 변경

▶실험 분석


-강성이 향상되어 변형에 대한 저항 증가로 인한 1층 전단벽 하단에 큰 휨모멘트 발생, 이로 인해 1층 전단벽-베이스플레이트 분리 발생

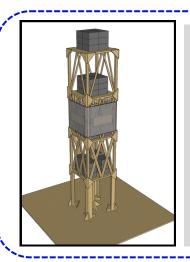
▶피드백

-4층 가새에 대해 역V로 설계 변경 고려 -1층 전도방지 플레이트 추가 설치 고려

• 2차 실험 결과

▶변경사항

- A4지를 사용하여 마찰판 설치
- -도르래를 작동하는 자유단 기둥 설치
- -2층,3층 V자 + 역V자 가새로 설계 변경
- -4층 가새를 기둥에 A4지 보강으로 대체


▶실험 분석

- -댐퍼의 운동방향 등 정상 작동 확인
- -최상부에 큰 변위 발생 및 부하에 대한 설계 강도 부적합

▶피드백

- -4층 보강을 위한 추가 가새 고려
- -최상부의 변위 저감을 위해 구조체의 전체 적인 강성 균일화 고려 (거동 안정성 확보)

• 최종 모델

높은 강성으로 인한 특정 부분의 응력집중을 피하기 위한 설계 변경 고려, 설계 시 각 층마다 부하를 고려하여 다음과 같이 설계

-4층부: 역V 가새 설계

-3층부: V, 역V 가새 설계

-2층부: 가새 단면적을 높여 V, 역V 가새 설계

구조체의 전도 방지를 위해 전단벽 하단 보강 고려 -전단벽 하단 내부에 거셋 플레이트를 각 2개씩 추가 보강

04 공정

• 내역서

재료명	규격	단가 [백만원]	소요량	가격 [백만원]	비고
MDF Base 기초판	400mm x 400mm x 6mm	-	1		기본 제공
MDF Strip	600mm x 4mm x 6mm	10	52	520	
MDF Plate	200mm x 200mm x 6mm	100	5	500	
스트링 고무줄 (Φ 2~3 m)	600mm	40	4	160	
A4지	210mm x 297mm	10	6	60	
접착제	20g	200	2	400	록타이트 401
	1640				

공정표

		소요시간																	
구분		1시간					2시간						3시간						
		10분	20분	30분	40분	50분	60분	10분	20분	30분	40분	50분	60분	10분	20분	30분	40분	50분	60분
제작	10 x 10 기둥 제작																		
	16 x 16 기둥 제작																		
	Plate 제작																		
	헌치 제작																		
	마찰 댐퍼 제작																		
	가새 제작																		
	도르래 제작																		
시공	Plate 천공 과정																		
	마찰 댐퍼 부착																		
	기둥 코어 조립																		
	기둥 a4 접합																		
마감	하중블럭 설치																		
	톱밥 보강																		
	가새 부착																		
	마무리 작업																		

구용준 장민석 조용준 김승수 다같이